

4-Mbit (256K x 16) Static RAM

Features

· Very high speed: 45 ns

Wide voltage range: 2.20V–3.60V
Pin-compatible with CY62146CV30

· Ultra-low active power

Typical active current: 1.5 mA @ f = 1 MHz
 Typical active current: 8 mA @ f = f_{max}

· Ultra low standby power

• Easy memory expansion with CE, and OE features

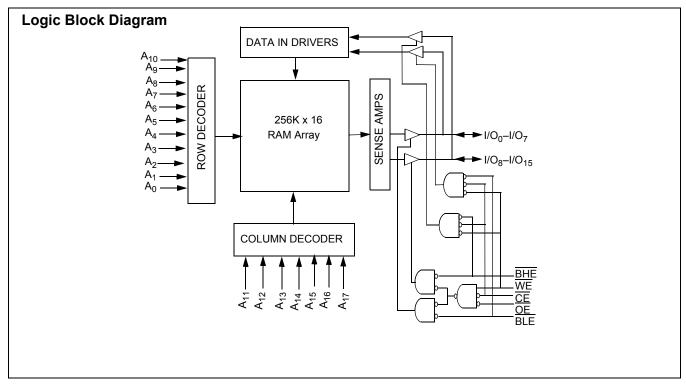
· Automatic power-down when deselected

CMOS for optimum speed/power

Packages offered 48-ball BGA and 44-pin TSOPII

Also available in Lead-free packages

Functional Description^[1]


The CY62146DV30 is a high-performance CMOS static RAM organized as 256K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has

an automatic power-down feature that significantly reduces power consumption. The device can also be put into standby mode reducing power consumption by more than 99% when deselected (\overline{CE} HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (\overline{CE} HIGH), outputs are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (\overline{BHE} , \overline{BLE} HIGH), or during a write operation (\overline{CE} LOW and \overline{WE} LOW).

<u>Writing</u> to the device is <u>acc</u>omplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified <u>on the</u> address pins (A $_0$ through A $_{17}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{17}$).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the truth table at the back of this data sheet for a complete description of read and write modes.

The CY62146DV30 is available in a 48-ball VFBGA, 44-pin TSOPII packages.

Note:

^{1.} For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Pin Configuration^[2, 3, 4] VFBGA (Top View)

2 4 5 OE A_0 A_2 NC BLE A_1 Î/Q8 I/Q₀ CE BHE A_3 В A₆ A_5 Í/Q₉ (1/O₁₀) 1/02 С I/O₁ Vcc V_{SS} 1/O₁₁ I/O₃ A₁₇ D 1/0₁₂ A₁₆ Vss I/O₄ DNU V_{CC} Ε $(1/Q_6)$ [I/O₅] 1/O₁₃) 1/O₁₄ A₁₄ F A_{15} A₁₂ (I/O₁₅) A₁₃ 1/07 WE NC G A_{11} NC A_8 NC Н

44 TSOP II (Top View)

			-
A ₄ \square	O 1	44	□ A ₅
A ₃ □	2	43	□ A ₆
A ₂	3	42	A ₇
A ₁ L	4	41	OE
A ₀ [5	40	BHE
ĊĔ	6	39	BLE
I/O ₀	7	38	☐ I/O ₁₅
I/O ₁ □	8	37	□ I/O ₁₄
I/O ₂	9	36	□ I/O ₁₃
I/O ₃ □	10	35	I/O ₁₂
V _{CC} □	11	34	
V_{SS}	12	33	□ V _{CC}
I/O ₄ □	13	32	□ I/O ₁₁
I/O ₅ □	14	31	☐ I/O ₁₀
I/O ₆ □	15	30	□ I/O ₉
I <u>/O</u> 7	16	29	□ I/O ₈
WE	17	28	□NC
A ₁₇	18	27	□ A ₈
A ₁₆	19	26	A_9
A ₁₅	20	25	∐ A ₁₀
A ₁₄	21	24	∐ A ₁₁
A ₁₃ □	22	23	\square A ₁₂

Product Portfolio

							n			
						Operating	g I _{CC} (mA))		
	V	_{CC} Range (V)	Speed	f = 1	MHz	f = 1	max	Standby	I _{SB2} (μ A)
Product	Min.	Typ. ^[5]	Max.	(ns)	Typ. ^[5]	Max.	Typ. ^[5]	Max.	Typ. ^[5]	Max.
CY62146DV30L	2.20V	3.0	3.60	45	1.5	3	10	20	2	12
CY62146DV30LL										8
CY62146DV30L	2.20V	3.0	3.60	55	1.5	3	8	15	2	12
CY62146DV30LL										8
CY62146DV30L	2.20V	3.0	3.60	70	1.5	3	8	15	2	12
CY62146DV30LL										8

- NC pins are not internally connected on the die.
 NC pins are not internally connected on the die.
 DNU pins have to be left floating or tied to V_{SS} to ensure proper application.
 Pins H1, G2, and H6 in the BGA package are address expansion pins for 8 Mb, 16 Mb, and 32 Mb, respectively.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......–55°C to +125°C Supply Voltage to Ground Potential-0.3V to + V_{CC(MAX)} + 0.3V DC Voltage Applied to Outputs in High-Z State $^{[6,\ 7]}$ -0.3V to V $_{CC(MAX)}$ + 0.3V

DC Input Voltage ^[6, 7]	$-0.3V$ to $V_{CC(MAX)} + 0.3V$
Output Current into Outputs (LOW	/)20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-up Current	>200 mA

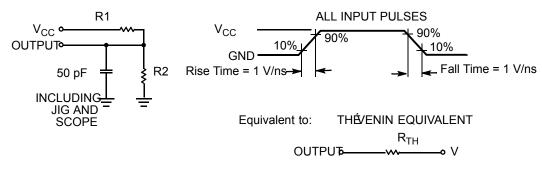
Operating Range

Device	Range	Ambient Temperature (T _A)	V cc ^[8]
CY62146DV30L	Industrial	–40°C to +85°C	2.20V to 3.60V
CY62146DV30LL			

Electrical Characteristics Over the Operating Range

				CY	62146D	V30-45	CY	62146D	V30-55	CY6	2146D\	/30-70	
Parameter	Description	Test Co	nditions	Min.	Typ. ^[5]	Max.	Min.	Typ. ^[5]	Max.	Min.	Typ. ^[5]	Max.	Unit
V _{OH}		$I_{OH} = -0.1 \text{mA}$	V _{CC} = 2.20V	2.0			2.0			2.0			V
	Voltage	$I_{OH} = -1.0 \text{mA}$	V _{CC} = 2.70V	2.4			2.4			2.4			V
V_{OL}	Output LOW	I_{OL} = 0.1 mA	$V_{CC} = 2.20V$			0.4			0.4			0.4	V
	Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.70V$			0.4			0.4			0.4	V
V _{IH}	Input HIGH Voltage	V_{CC} = 2.2V to	2.7V	1.8		V _{CC} + 0.3V	1.8		V _{CC} + 0.3V	1.8		V _{CC} + 0.3V	V
		V _{CC} = 2.7V to	3.6V	2.2		V _{CC} + 0.3V	2.2		V _{CC} + 0.3V	2.2		V _{CC} + 0.3V	V
V _{IL}		V_{CC} = 2.2V to	2.7V	-0.3		0.6	-0.3		0.6	-0.3		0.6	V
	Voltage	V _{CC} = 2.7V to	3.6V	-0.3		0.8	-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_{I} \le V_{CC}$		-1		+1	-1		+1	-1		+1	μА
I _{OZ}	Output Leakage Current	$\begin{array}{l} \text{GND} \leq \text{V}_{\text{O}} \leq \text{V}_{\text{CC}}, \text{Output} \\ \text{Disabled} \end{array}$		-1		+1	-1		+1	-1		+1	μА
I _{CC}	Operating	f = f _{MAX} = 1/t _{RC}	$V_{CC} = V_{CCmax}$ $I_{OUT} = 0 \text{ mA}$ CMOS levels		10	20		8	15		8	15	mA
	Supply Current	f = 1 MHz	CMOS levels		1.5	3		1.5	3		1.5	3	mA
I _{SB1}	<u>Aut</u> omatic	$\overline{CE} \ge V_{CC} - 0.2$	V, L		2	12		2	12		2	12	μΑ
	Power-down Current — CMOS	$V_{IN} \ge V_{CC} = 0.2 \text{V}$ $f = f_{MAX} \text{ (Addressel Only)},$ $\underline{f} = 0 \text{ (OE, WE)}$ $\underline{BLE}, V_{CC} = 3 \text{ (OE)}$	E, BHE and	-		8			8			8	
I _{SB2}		$\overline{CE} \ge V_{CC} - 0$.2V, L		2	12		2	12		2	12	μА
		0.2V, f = 0, V _{CC} = 3	2V or V _{IN} ≤ LL	-		8			8			8	

 ^{6.} V_{IL(min.)} = -2.0V for pulse durations less than 20 ns.
 7. V_{IH(max)} = V_{CC}+0.75V for pulse durations less than 20 ns.
 8. Full device AC operation assumes a 100-μs ramp time from 0 to V_{CC}(min) and 200 μs wait time after V_{CC} stabilization.

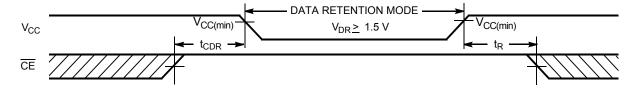

Capacitance (for all packages)[9]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	10	pF

Thermal Resistance^[9]

Parameter	Description	Test Conditions	BGA	TSOP II	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	72	75.13	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)		8.86	8.95	°C/W

AC Test Loads and Waveforms^[10]



Parameters	2.50V	3.0V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V_{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions	Min.	Typ . ^[5]	Max.	Unit	
V_{DR}	V _{CC} for Data Retention			1.5			V
I _{CCDR}	Data Retention Current	V_{CC} = 1.5V CE \geq V _{CC} - 0.2V,	L			9	μΑ
		$CE \ge V_{CC} - 0.2V$, $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$	LL			6	
t _{CDR} ^[9]	Chip Deselect to Data Retention Time			0			ns
t _R ^[11]	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform

Notes:

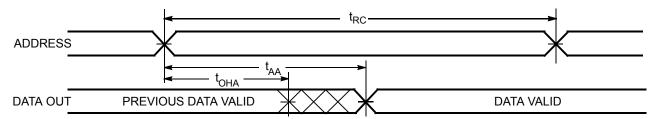
- 9. Tested initially and after any design or process changes that may affect these parameters.
- 10. Test condition for the 45 ns part is a load capacitance of 30 pF.
 11. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 100 μs or stable at V_{CC(min.)} ≥ 100 μs.

Switching Characteristics Over the Operating Range [12]

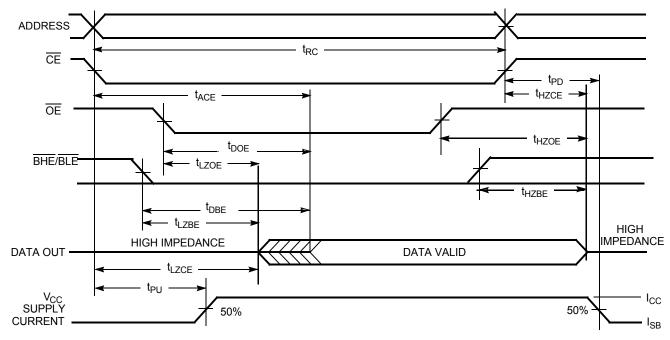
		45 ı	าร ^[10]	55	ns	70 ns		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle								•
t _{RC}	Read Cycle Time	45		55		70		ns
t _{AA}	Address to Data Valid		45		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		10		ns
t _{ACE}	CE LOW to Data Valid		45		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		25		35	ns
t _{LZOE}	OE LOW to LOW Z ^[13]	5		5		5		ns
t _{HZOE}	OE HIGH to High Z ^[13, 14]		15		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[13]	10		10		10		ns
t _{HZCE}	CE HIGH to High Z ^[13, 14]		20		20		25	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		45		55		70	ns
t _{DBE}	BLE/BHE LOW to Data Valid		25		25		35	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[13]	10		10		10		ns
t _{HZBE}	BLE/BHE HIGH to HIGH Z ^[13, 14]		15		20		25	ns
Write Cycle ^{[18}	5]	.			I.	1	•	
t _{WC}	Write Cycle Time	45		55		70		ns
t _{SCE}	CE LOW to Write End	40		40		60		ns
t _{AW}	Address Set-up to Write End	40		40		60		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	35		40		45		ns
t _{BW}	BLE/BHE LOW to Write End	40		40		60		ns
t _{SD}	Data Set-up to Write End	25		25		30		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{HZWE}	WE LOW to High-Z ^[13, 14]		15		20		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[13]	10		10		10		ns

^{12.} Test conditions for all parameters other than three-state parameters assume signal transition time of 3 ns (1V/ns) or less, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{QL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.

13. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZDE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.


^{14.} t_{HZOE}, t_{HZBE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter <u>a high-impedence</u> state.

15. The internal Write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.



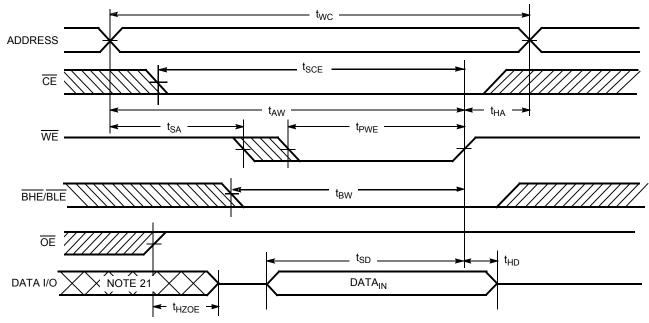
Switching Waveforms

Read Cycle 1 (Address Transition Controlled)^[16, 17]

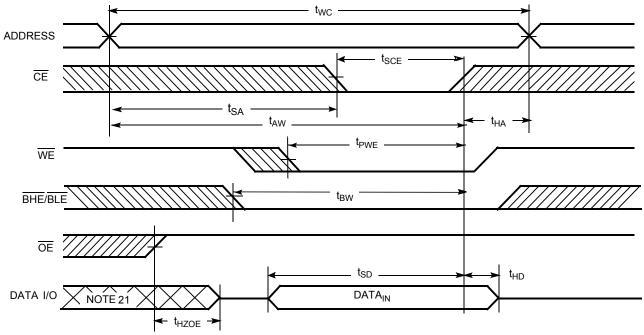
Read Cycle No. 2 (OE Controlled)[17, 18]

- Notes:

 16. The device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$, \overline{BHE} and/or $\overline{BLE} = V_{IL}$.


 17. \overline{WE} is HIGH for read cycle.

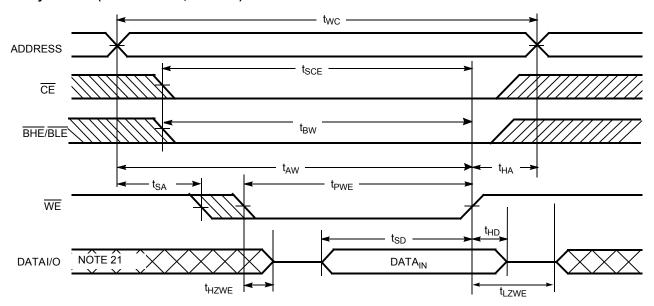
 18. Address valid prior to or coincident with \overline{CE} and \overline{BHE} , \overline{BLE} transition LOW.



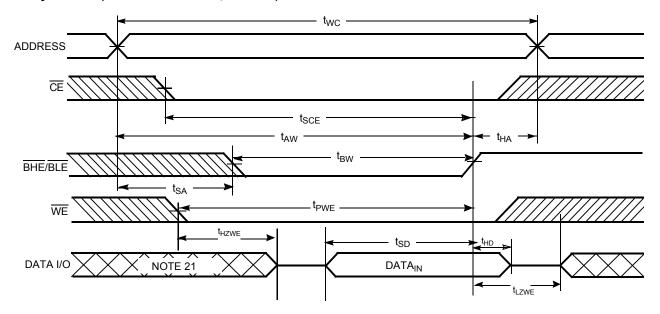
Switching Waveforms (continued)

Write Cycle No. 1 (WE Controlled)^[15, 19, 20]

Write Cycle No. 2 (CE Controlled)[15, 19, 20]



Notes: 19. Data I/O is high impedance if $\overline{OE} = V_{lH}$. 20. If \overline{CE} goes HIGH simultaneously with WE = V_{lH} , the output remains in a high-impedance state. 21. During this period, the I/Os are in output state and input signals should not be applied.

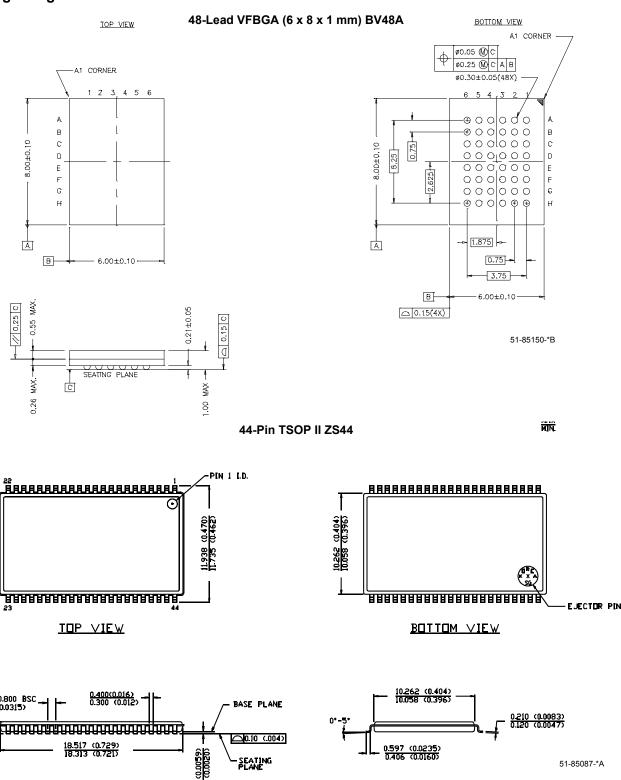


Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)[20]

Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[20]

Truth Table


CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Х	Х	Н	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	L	L	L	Data Out (I/O _O –I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O –I/O ₁₅)	Write	Active (I _{CC})
L	L	X	Н	L	Data In (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
45	CY62146DV30LL-45BVI	BV48A	48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm)	Industrial
	CY62146DV30LL-45BVXI		48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm) (Pb-free)	
	CY62146DV30LL-45ZSXI	ZS-44	44-pin TSOP II (Pb-free)	
55	CY62146DV30L-55BVI	BV48A	48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm)	Industrial
	CY62146DV30L-55BVXI		48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm) (Pb-free)	
	CY62146DV30LL-55BVI		48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm)	
	CY62146DV30LL-55BVXI		48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm) (Pb-free)	
	CY62146DV30L-55ZSXI	ZS-44	44-pin TSOP II (Pb-free)	
	CY62146DV30LL-55ZSXI			
70	CY62146DV30L-70BVI	BV48A	48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm)	Industrial
	CY62146DV30L-70BVXI		48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm) (Pb-free)	
	CY62146DV30LL-70BVI		48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm)	
	CY62146DV30LL-70BVXI		48-ball Very Fine Pitch BGA (6 mm × 8mm × 1 mm) (Pb-free)	
	CY62146DV30L-70ZSXI	ZS-44	44-pin TSOP II (Pb-free)	Industrial
	CY62146DV30LL-70ZSXI			

Package Diagram

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

Document Title:CY62146DV30 MoBL [®] 4-Mbit (256K x 16) Static RAM Document Number: 38-05339				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	213251	See ECN	AJU	New Data Sheet
*A	316039	See ECN	PCI	Added 45-ns Speed Bin in AC, DC and Ordering Information tables Added Footnote #10 on page #4 Added Pb-free package ordering information on page # 9 Changed 44-lead TSOP-II package name on page 10 from Z44 to ZS44 Standardized Icc values across 'L' and 'LL' bins